Chapter 5.3: The Definite Integral

Limits of Riemann Sums using \int

Computing the area under f(x) for $x \in [a, b]$: Pick $a = a_0 < \cdots < a_n = b$ and $a_{k-1} \le x_i \le a_k$ and $\Delta_k = a_k - a_{k-1}$.

area =
$$\lim_{n\to\infty}\sum_{k=1}^n f(x_k)\Delta_k$$

Notation using the *definite integral*

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta_k$$

to b in variable x. Integral $\int_{a}^{b} f(x) dx$ from a of function f(x)

Few things to notice

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta_k$$

If the limit exists, *f* is called *integrable*.

All continuous functions and functions with finitely many jumps are integrable. Line has an orientation a < b. Flipping bounds flips sign.

$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$$

Recall: Area if f(x) < 0, the area between f(x) and the axis is negative.

Easy examples

Evaluate the following integrals

•
$$\int_{-1}^{2} x \, dx = \frac{3}{2}$$

The blue area is $(1/2)(2)(2) = 2$ and the red area is $(1/2)(1)(1) = 1/2$. Adding the blue to *negative* the red yields $\frac{3}{2}$.
•
$$\int_{0}^{2} f(x) \, dx$$
, where $f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ x & 1 < x \le 2 \end{cases}$

$$\int_{0}^{2} f(x) \, dx = 1 + \frac{3}{2} = \frac{5}{2}$$

•
$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \frac{\pi}{4}$$

Notice the area is a quarter of a circle.

Properties of integration

•
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

•
$$\int_{a}^{a} f(x) dx = -\int_{a}^{a} f(x) dx = 0$$

•
$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

•
$$\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} f(x) dx$$

•
$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

• If $m \le f(x) \le M$ for $a \le x \le b$, then $m \le \frac{1}{b-a} \int_a^b f(x) dx \le M$.

More examples Example: Find $\int_{1}^{5} f(x) dx$ given $\int_{1}^{3} f(x) dx =$ $\int_{2}^{3} f(x) dx =$ $\int_{2}^{5} f(x) dx =$ See the graphical explanation.

Example: Given that $\int_{4}^{7} f(x) dx =$ $\int_{4}^{7} g(x) dx =$ $\int_{4}^{7} (3 \cdot f(x) + 2 \cdot g(x)) dx =$ Even more examples $\int_{-5}^{5} \frac{t^3}{t^4 + t^2 + 1} dt = 0$ Notice the function is odd. That means f(x) = -f(-x).

The *average value* of f(x) on [a, b] is

$$\boxed{\frac{1}{b-a}\int_a^b f(x) \ dx}$$

Find the average value of $f(x) = \sqrt{1 - x^2}$ on [-1, 1]. Notice that f(x) will be a halfcircle. Hence

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

= $\frac{1}{1-(-1)} \int_{-1}^{1} f(x) dx$
= $\frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}$

Mean Value Theorem Again

Let f be continuous on [a, b]. Then there exists a c in [a, b] such that

$$f(c) = \underbrace{\frac{1}{b-a} \int_{a}^{b} f(x) dx}_{\text{Average value of } f(x) \text{ on } [a,b]}$$

Idea: Use the Intermediate Value Theorem. Let m be the minimum of f(x) on [a, b]. Let M be the maximum of f(x) on [a, b].

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a),$$

$$m \le \frac{1}{b-a} \int_a^b f(x) \, dx \le M$$

and so the Intermediate Value Theorem yields the existence of the desired c.